Assessment Schedule - 2007

Mathematics: Use straightforward algebraic methods and solve equations (90147)

Evidence Statement

	Achievement Criteria	No	Evidence	Code	Judgement	Sufficiency
ACHIEVEMENT	Use straightforward	1	x + 2	A1	Equivalent numerical values are acceptable.	Achievement: Two of A1 AND Two of A2
	algebraic methods		(x-7)(x+2)	A1		
	Solve equations.	3	n=6	A1		Replacement:
		4a	m=4	A2		Appropriate evidence for algebraic
		b	$x = \frac{1}{2}, x = -3$	A2		manipulation (A1) may be found in:
		С	$x = \frac{16}{5}$ or $3\frac{1}{5}$ or 3.2	A2		Q5, Q6, Q7, Q8 and for solving equations (A2): Q7, Q8.

ACHIEVEMENT WITH MERIT	Use algebraic methods and solve equations in context.		$\frac{2p(p-6q)}{6p^2} \text{ or } \frac{2(p^2-6pq)}{6p^2} \text{ or }$ $\frac{p(2p-12q)}{6p^2}$ $= \frac{p-6q}{3p} \text{ or } \frac{p^2-6pq}{3p^2} \text{ or }$ $\frac{2p-12q}{6p}$ $w = \frac{A^2g}{\pi^2} \text{ or } \left(\frac{A}{\pi}\right)^2 g$ 10 metres	M M M	Units not required anywhere. Any correct factorisation of the numerator could provide evidence for A1. Any correct simplification of the fraction could provide evidence for M. Accept equivalent representations of a simplified expression If brackets are not used, the working shown may be used as evidence that the correct order of operations was performed: • first: ÷ A by π; • next: square it • × by g last CAO CAO is also evidence for A2 If used, appropriate algebraic manipulation could provide evidence for A1.	Merit: Achievement plus Two M OR Three M
ACHIEVEMENT WITH EXCELLENCE	Use algebraic strategies to investigate and solve problems.	8	(n+1)(n+2)-1=T or $(n+1)^2+n=T$ or $n(n+3)+n=T$ or $n^2+3n+1=T$ Solve: (n+1)(n+2)-1=461 $n^2+3n-460=0$ (n+23)(n-20)=0 n=-23 or $20Since a positive value is sensible here,Pattern Number is 20.$	E	Or equivalent. Writing the algebraic description for the pattern may be evidence for A1 or M. Solved equation is evidence for A2 / M. CAO is evidence for A2 / M. For E, there must be valid equation(s), involving the relationship(s) between T (#tiles) and n (pattern #). The positive solution, 20, must be given as the solution to the problem.	Excellence: Merit plus E

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Use straightforward algebraic methods. Solve equations.	Use algebraic methods and solve equations in context.	Use algebraic strategies to investigate and solve problems.
	Achievement plus 2 of code M	Merit plus code E
$2 \times A1$	or	
and	$3 \times M$	
$2 \times A2$		

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- · Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.